此崗位根據(jù)業(yè)務(wù)需求,不定期出差法國(guó),不能接受勿擾!??!
工作任務(wù):
1、開發(fā)并優(yōu)化用于機(jī)器人系統(tǒng)中感知、決策和交互的人工智能模型
2、實(shí)施為嵌入式環(huán)境量身定制的計(jì)算機(jī)視覺(jué)、傳感器融合和機(jī)器學(xué)習(xí)管道
3、與跨職能團(tuán)隊(duì)協(xié)作,將人工智能功能集成到機(jī)器人軟件棧中
4、在實(shí)際環(huán)境中評(píng)估并調(diào)整人工智能模型,以提升其性能、準(zhǔn)確性和穩(wěn)健性
主要職責(zé):
1、實(shí)施并訓(xùn)練用于語(yǔ)音或傳感器數(shù)據(jù)的深度學(xué)習(xí)模型
2、針對(duì)嵌入式平臺(tái)(圖形處理器、張量處理器、神經(jīng)網(wǎng)絡(luò)處理器)優(yōu)化人工智能推理
3、創(chuàng)建數(shù)據(jù)集,定義評(píng)估指標(biāo),并進(jìn)行嚴(yán)格測(cè)試
4、通過(guò)迭代更新監(jiān)控并改進(jìn)已部署的人工智能模塊
5、在嵌入式系統(tǒng)上集成、部署和測(cè)試已訓(xùn)練的人工智能模型
任職資格:
1、具備扎實(shí)的 C++ 和 Python 使用經(jīng)驗(yàn)
2、了解人工智能 / 機(jī)器學(xué)習(xí)框架(PyTorch、TensorFlow、ONNX 等)
3、熟悉針對(duì)嵌入式系統(tǒng)(圖形處理器、張量處理器、神經(jīng)網(wǎng)絡(luò)處理器等)的模型優(yōu)化
4、擁有數(shù)據(jù)管理和標(biāo)注經(jīng)驗(yàn)(數(shù)據(jù)集創(chuàng)建、清理、標(biāo)記)
5、具備以問(wèn)題解決為導(dǎo)向的思維和注重交付的執(zhí)行力
6、具備與技術(shù)和非技術(shù)受眾良好溝通的能力
7、語(yǔ)言能力:法語(yǔ)和英語(yǔ)達(dá)到專業(yè)熟練水平
8、教育背景:計(jì)算機(jī)科學(xué)、機(jī)器人學(xué)、人工智能或相關(guān)領(lǐng)域的碩士學(xué)位(5 年制本科后教育)
9、工作經(jīng)驗(yàn):3 年應(yīng)用人工智能或機(jī)器學(xué)習(xí)經(jīng)驗(yàn),最好具備機(jī)器人或嵌入式系統(tǒng)領(lǐng)域經(jīng)驗(yàn)
Mission:
-Develop and optimize AI models for perception, decision-making, and interaction in robotic systems.
-Implement computer vision, sensor fusion, and machine learning pipelines tailored for embedded environments.
-Collaborate with cross-functional teams to integrate AI features into the robotics software stack.
-Evaluate and tune AI models for performance, accuracy, and robustness in real-world conditions.
Main Responsibilities:
-Implement and train deep learning models for speech, or sensor data.
-Optimize AI inference for embedded platforms (GPU, TPU, NPU).
-Create datasets, define evaluation metrics, and perform rigorous testing.
-Monitor and improve deployed AI modules through iterative updates.
-Integrate, depoy and test trained AI models on embedded systems
Skills Required:
Technical:
-Strong experience in C++ and Python
-Knowledge of AI/ML frameworks (PyTorch, TensorFlow, ONNX…)
-Familiarity with model optimization for embedded systems (GPU, TPU, NPU…)
-Experience in data management & annotation (dataset creation, cleaning, labeling)
-Problem solving oriented thinking and delivery-focused execution
-Excellent communication skills across technical and non-technical audiences
Languages :
-Professional proficiency in French and English
Education:
Master’s degree (Bac+5) in Computer Science, Robotics, AI, or related field.
Experience:
-3 years in applied AI or ML, preferably in robotics or embedded systems.